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Reusable IR

• Modern compilers are made from loosely coupled components

• Front ends produce IR

• Middle ‘ends’ transform IR (optimisation / analysis /
instrumentation)

• Back ends generate native code (object code or assembly)



Structure of a Modern Compiler

Tokeniser

Parser

AST Builder

Optimiser

Code Generator

Source Code

Token Stream

Parser Actions

Intermediate Representation

Intermediate Representation

Executable Code

As with any other piece of
software using libraries simpli-
fies development.
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Optimisation Passes

• Modular, transform IR (Analysis passes just inspect IR)

• Can be run multiple times, in di↵erent orders

• May not always produce improvements when run in the wrong
order!

• Some intentionally pessimise code to make later passes work
better



Register vs Stack IR

• Stack makes interpreting, naive compilation easier

• Register makes various optimisations easier

• Which ones?



Common Subexpression Elimination: Register IR

Source language:⌥
a = (b+c) * (b+c);  ⌃ ⇧⌥
r1 = load b

r2 = load c

r3 = r1 + r2

r4 = load b

r5 = load c

r6 = r4 + r5

r7 = r3 * r6

store a r6  ⌃ ⇧
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Common Subexpression Elimination: Stack IR

Source language:⌥
a = (b+c) * (b+c);  ⌃ ⇧⌥
load b

load c

add

load b

load c

add

mul

store a  ⌃ ⇧



Common Subexpression Elimination: Stack IR

Source language:⌥
a = (b+c) * (b+c);  ⌃ ⇧⌥
load b

load c

add

dup

mul

store a  ⌃ ⇧



Problems with CSE and Stack IR

• Entire operation must happen at once (no incremental
algorithm)

• Finding identical subtrees is possible, reusing results is harder

• If the operations were not adjacent, must spill to temporary



Hierarchical vs Flat IR

• Source code is hierarchical (contains structured flow control,
scoped values)

• Assembly is flat (all flow control is by jumps)

• Intermediate representations are supposed to be somewhere
between the two

• Think about the possible ways that a for loop, while loop,
and if statement with a backwards goto might be
represented.



Hierarchical IR

• Easy to express high-level constructs

• Preserves program semantics

• Preserves high-level semantics (variable lifetime, exceptions)
clearly

• Example: WHRIL in MIPSPro/Open64/Path64 and
derivatives



Flat IR

• Easy to map to the back end

• Simple for optimisations to process

• Must carry scope information in ad-hoc ways (e.g. LLVM IR
has intrinsics to explicitly manage lifetimes for stack
allocations)

• Examples: LLVM IR, CGIR, PTX



Questions?
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What Is LLVM IR?

• Unlimited Single-Assignment Register machine instruction set

• Strongly typed
• Three common representations:

• Human-readable LLVM assembly (.ll files)
• Dense ‘bitcode’ binary representation (.bc files)
• C++ classes



Unlimited Register Machine?

• Real CPUs have a fixed number of registers

• LLVM IR has an infinite number

• New registers are created to hold the result of every
instruction

• CodeGen’s register allocator determines the mapping from
LLVM registers to physical registers

• Type legalisation maps LLVM types to machine types and so
on (e.g. 128-element float vector to 32 SSE vectors or 16
AVX vectors, 1-bit integers to 32-bit values)



Static Single Assignment

• Registers may be assigned to only once

• Most (imperative) languages allow variables to be... variable

• This requires some e↵ort to support in LLVM IR: SSA
registers are not variables

• SSA form makes dataflow explicit: All consumers of the result
of an instruction read the output register(s)



Multiple Assignment

⌥
int a = someFunction ();
a++;  ⌃ ⇧

• One variable, assigned to twice.



Translating to LLVM IR

⌥
%a = call i32 @someFunction ()
%a = add i32 %a, 1  ⌃ ⇧
error: multiple definition of local value named ’a’

%a = add i32 %a, 1

^



Translating to Correct LLVM IR

⌥
%a = call i32 @someFunction ()
%a2 = add i32 %a, 1  ⌃ ⇧

• Front end must keep track of which register holds the current
value of a at any point in the code

• How do we track the new values?



Translating to LLVM IR The Easy Way

⌥
; int a
%a = alloca i32 , align 4
; a = someFunction
%0 = call i32 @someFunction ()
store i32 %0, i32* %a
; a++
%1 = load i32* %a
%2 = add i32 %1, 1
store i32 %2, i32* %a  ⌃ ⇧

• Numbered register are allocated automatically

• Each expression in the source is translated without worrying
about data flow

• Memory is not SSA in LLVM



Isn’t That Slow?

• Lots of redundant memory operations

• Stores followed immediately by loads

• The Scalar Replacement of Aggregates (SROA) or mem2reg
pass cleans it up for us⌥

%0 = call i32 @someFunction ()
%1 = add i32 %0, 1  ⌃ ⇧
Important: SROA only works if the alloca is declared in the

entry block to the function!



Sequences of Instructions

• A sequence of instructions that execute in order is a basic

block

• Basic blocks must end with a terminator

• Terminators are intraprocedural flow control instructions.

• call is not a terminator because execution resumes at the
same place after the call

• invoke is a terminator because flow either continues or
branches to an exception cleanup handler

• This means that even “zero-cost” exceptions can have a cost:
they complicate the control-flow graph (CFG) within a
function and make optimisation harder.



Intraprocedural Flow Control

• Assembly languages typically manage flow control via jumps /
branches (often the same instructions for inter- and
intraprocedural flow)

• LLVM IR has conditional and unconditional branches

• Branch instructions are terminators (they go at the end of a
basic block)

• Basic blocks are branch targets

• You can’t jump into the middle of a basic block (by the
definition of a basic block)



What About Conditionals?

⌥
int b = 12;
if (a)

b++;
return b;  ⌃ ⇧

• Flow control requires one basic block for each path

• Conditional branches determine which path is taken



‘Phi, my lord, phi!’ - Lady Macbeth, Compiler Developer

• � nodes are special instructions used in SSA construction

• Their value is determined by the preceding basic block

• � nodes must come before any non-� instructions in a basic
block

• In code generation, � nodes become a requirement for one
basic block to leave a value in a specific register.

• Alternate representation: named parameters to basic blocks
(used in Swift IR)



Easy Translation into LLVM IR

entry:
; int b = 12
%b = alloca i32
store i32 12, i32* %b
; if (a)
%0 = load i32* %a
%cond = icmp ne i32 %0, 0
br i1 %cond , label %then , label %end

then:
; b++
%1 = load i32* %b
%2 = add i32 %1, 1
store i32 %2, i32* %b
br label %end

end:
; return b
%3 = load i32* %b
ret i32 %3



In SSA Form...

entry:
; if (a)
%cond = icmp ne i32 %a, 0
br i1 %cond , label %then , label %end

then:
; b++
%inc = add i32 12, 1
br label %end

end:
; return b
%b.0 = phi i32 [ %inc , %then ], [ 12, %entry ]
ret i32 %b.0

The output from
the mem2reg pass
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And After Constant Propagation...

entry:
; if (a)
%cond = icmp ne i32 %a, 0
br i1 %cond , label %then , label %end

then:
br label %end

end:
; b++
; return b
%b.0 = phi i32 [ 13, %then ], [ 12, %entry ]
ret i32 %b.0

The output from the
constprop pass. No add
instruction.



And After CFG Simplification...

entry:
%tobool = icmp ne i32 %a, 0
%0 = select i1 %tobool , i32 13, i32 12
ret i32 %0

• Output from the simplifycfg pass

• No flow control in the IR, just a select instruction



Why Select?

x86:

testl %edi, %edi

setne %al

movzbl %al, %eax

orl $12, %eax

ret

ARM:

mov r1, r0

mov r0, #12

cmp r1, #0

movne r0, #13

mov pc, lr

PowerPC:

cmplwi 0, 3, 0

beq 0, .LBB0_2

li 3, 13

blr

.LBB0_2:

li 3, 12

blr

Branch is only needed on some architectures.

Would a predicated add instruction be better on ARM?
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Canonical Form

• LLVM IR has a notion of canonical form

• High-level have a single canonical representation
• For example, loops:

• Have a single entry block
• Have a single back branch to the start of the entry block
• Have induction variables in a specific form

• Some passes generate canonical form from non-canonical
versions commonly generated by front ends

• All other passes can expect canonical form as input



Functions

• LLVM functions contain at least one basic block

• Arguments are registers and are explicitly typed

• Registers are valid only within a function scope⌥
@hello = private constant [13 x i8] c"Hello

world !\00"

define i32 @main(i32 %argc , i8** %argv) {
entry:

%0 = getelementptr [13 x i8]* @hello , i32 0,
i32 0

call i32 @puts(i8* %0)
ret i32 0

}  ⌃ ⇧



Get Element Pointer?

• Often shortened to GEP (in code as well as documentation)

• Represents pointer arithmetic

• Translated to complex addressing modes for the CPU

• Also useful for alias analysis: result of a GEP is the same
object as the original pointer (or undefined)

In modern LLVM IR, on the way to typeless pointers, GEP
instructions carry the pointee type. For brevity, we’ll use the old

form in the slides.



F!@£ing GEPs! HOW DO THEY WORK?!?⌥
struct a {

int c;
int b[128];

} a;
int get(int i) { return a.b[i]; }  ⌃ ⇧

⌥
%struct.a = type { i32 , [128 x i32] }
@a = common global %struct.a zeroinitializer ,

align 4

define i32 @get(i32 %i) {
entry:

%arrayidx = getelementptr inbounds %struct.a*
@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx
ret i32 %0

}  ⌃ ⇧
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As x86 Assembly

⌥
define i32 @get(i32 %i) {
entry:

%arrayidx = getelementptr inbounds %struct.a*
@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx
ret i32 %0

}  ⌃ ⇧
get:

movl 4(%esp), %eax # load parameter

movl a+4(,%eax,4), %eax # GEP + load

ret



As ARM Assembly⌥
define i32 @get(i32 %i) {
entry:

%arrayidx = getelementptr inbounds %struct.a*
@a , i32 0, i32 1, i32 %i

%0 = load i32* %arrayidx
ret i32 %0

}  ⌃ ⇧
get:

ldr r1, .LCPI0_0 // Load global address

add r0, r1, r0, lsl #2 // GEP

ldr r0, [r0, #4] // load return value

bx lr

.LCPI0_0:

.long a



The Most Important LLVM Classes

• Module - A compilation unit.

• Function - Can you guess?

• BasicBlock - a basic block

• GlobalVariable (I hope it’s obvious)

• IRBuilder - a helper for creating IR

• Type - superclass for all LLVM concrete types

• ConstantExpr - superclass for all constant expressions

• PassManagerBuilder - Constructs optimisation pass
sequences to run

• ExecutionEngine - Interface to the JIT compiler
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Writing a New Pass

LLVM optimisations are self-contained classes:

• ModulePass subclasses modify a whole module

• FunctionPass subclasses modify a function

• LoopPass subclasses modify a function

• Lots of analysis passes create information your passes can use!



Example Language-specific Passes

ARC Optimisations:

• Part of LLVM

• Elide reference counting operations in Objective-C code when
not required

• Makes heavy use of LLVM’s flow control analysis

GNUstep Objective-C runtime optimisations:

• Distributed with the runtime.

• Can be used by clang (Objective-C) or LanguageKit
(Smalltalk)

• Cache method lookups, turn dynamic into static behaviour if
safe



Writing A Simple Pass

• Memoise an expensive library call

• Call maps a string to an integer (e.g. string intern function)

• Mapping can be expensive.

• Always returns the same result.⌥
x = example("some string");  ⌃ ⇧⌥
static int ._cache;
if (!. _cache)

._cache = example("some string");
x = ._cache;  ⌃ ⇧



Declaring the Pass

⌥
struct MemoiseExample : ModulePass , InstVisitor <

SimplePass >
{

... // Boilerplate , see SimplePass
/// The function that we’re going to memoise
Function *exampleFn;
/// The return type of the function
Type *retTy;
/// Call sites and their constant string

arguments
using ExampleCall = std::pair <CallInst&,std::

string >;
/// All of the call sites that we’ve found
SmallVector <ExampleCall , 16> sites;  ⌃ ⇧



The Entry Point⌥
/// Pass entry point
bool runOnModule(Module &Mod) override {

sites.clear ();
// Find the example function
exampleFn = Mod.getFunction("example");
// If it isn’t referenced , exit early
if (! exampleFn)

return false;
// We’ll use the return type later for the

caches
retTy = exampleFn ->getFunctionType ()->

getReturnType ();
// Find all call sites
visit(Mod);
// Insert the caches
return insertCaches(Mod);

}  ⌃ ⇧



Finding the Call

⌥
void visitCallInst(CallInst &CI) {

if (CI.getCalledValue () == exampleFn)
if (auto *arg = dyn_cast <GlobalVariable >(

CI.getOperand (0) ->stripPointerCasts ()))
if (auto *init = dyn_cast <

ConstantDataSequential >(
arg ->getInitializer ()))

if (init ->isString ())
sites.push_back ({CI,

init ->getAsString ()});
}  ⌃ ⇧



Creating the Cache

• Once we’ve found all of the replacement points, we can insert
the caches.

• Don’t do this during the search - iteration doesn’t like the
collection being mutated...⌥

StringMap <GlobalVariable*> statics;
for (auto &s : sites) {

auto *lookup = &s.first;
auto arg = s.second;
GlobalVariable *cache = statics[arg];
if (!cache) {

cache = new GlobalVariable(M, retTy , false ,
GlobalVariable :: PrivateLinkage ,

Constant :: getNullValue(retTy),
"._cache");

statics[arg] = cache;
}  ⌃ ⇧



Restructuring the CFG

⌥
auto *preLookupBB = lookup ->getParent ();
auto *lookupBB =

preLookupBB ->splitBasicBlock(lookup);
BasicBlock :: iterator iter(lookup);
auto *afterLookupBB =

lookupBB ->splitBasicBlock (++ iter);
preLookupBB ->getTerminator ()->eraseFromParent ();
lookupBB ->getTerminator ()->eraseFromParent ();
auto *phi = PHINode :: Create(retTy , 2, "cache",

&* afterLookupBB ->begin());
lookup ->replaceAllUsesWith(phi);  ⌃ ⇧



Adding the Test

⌥
IRBuilder <> B(beforeLookupBB);
llvm:: Value *cachedClass =

B.CreateBitCast(B.CreateLoad(cache), retTy);
llvm:: Value *needsLookup =

B.CreateIsNull(cachedClass);
B.CreateCondBr(needsLookup , lookupBB ,

afterLookupBB);
B.SetInsertPoint(lookupBB);
B.CreateStore(lookup , cache);
B.CreateBr(afterLookupBB);
phi ->addIncoming(cachedClass , beforeLookupBB);
phi ->addIncoming(lookup , lookupBB);  ⌃ ⇧



A Simple Test

⌥
int example(char *foo) {

printf("example (%s)\n", foo);
int i=0;
while (*foo)

i += *(foo++);
return i;

}
int main(void) {

int a = example("a contrived example");
a += example("a contrived example");
a += example("a contrived example");
a += example("a contrived example");
a += example("a contrived example");
return a;

}  ⌃ ⇧



Running the Test

$ clang example.c -O2 ; ./a.out ; echo $?

example(a contrived example)

example(a contrived example)

example(a contrived example)

example(a contrived example)

example(a contrived example)

199

$ clang -Xclang -load -Xclang ./memo.so -O2

$ ./a.out ; echo $?

example(a contrived example)

199



How Does LLVM IR Become Native Code?

• Transformed to directed acyclic graph representation
(SelectionDAG)

• Mapped to instructions (Machine IR)

• Streamed to assembly or object code writer



Selection DAG

• DAG defining operations and dependencies
• Legalisation phase lowers IR types to target types

• Arbitrary-sized vectors to fixed-size
• Float to integer and softfloat library calls
• And so on

• DAG-to-DAG transforms simplify structure

• Code is still (more or less) architecture independent at this
point

• Some peephole optimisations happen here



dag-combine2 input for main:entry

EntryToken [ID=0]
0x7fae33c1a870

ch

TargetConstant<0> [ID=2]
0x7fae34071260

i64

Constant<0> [ID=3]
0x7fae340714c0

i8

Register %RDI [ID=4]
0x7fae340715f0

i64

Register %AL [ID=5]
0x7fae34071850

i8

TargetGlobalAddress<i32 (i8*, ...)* @printf> 0 [ORD=2] [ID=6]
0x7fae34071ab0

i64

RegisterMask [ID=7]
0x7fae34071be0

Untyped

Register %EAX [ID=8]
0x7fae34800000

i32

Constant<0> [ID=9]
0x7fae34800260

i32

TargetConstant<0> [ID=10]
0x7fae34800390

i16

0 1
callseq_start [ORD=2] [ID=11]

0x7fae34071390
ch glue

0 1 2
CopyToReg [ORD=2] [ID=12]

0x7fae34071720
ch glue

0
X86ISD::WrapperRIP [ORD=2]

0x7fae34800720
i64

TargetGlobalAddress<[13 x i8]* @.str> 0 [ORD=2]
0x7fae34071000

i64

0 1 2 3
CopyToReg [ORD=2] [ID=13]

0x7fae34071980
ch glue

0 1 2 3 4 5
X86ISD::CALL [ORD=2] [ID=14]

0x7fae34071d10
ch glue

0 1 2 3
callseq_end [ORD=2] [ID=15]

0x7fae34071e40
ch glue

0 1 2
CopyFromReg [ORD=2] [ID=16]

0x7fae34800130
i32 ch glue

0 1 2
CopyToReg [ORD=3] [ID=17]

0x7fae348004c0
ch glue

0 1 2 3
X86ISD::RET_FLAG [ORD=3] [ID=18]

0x7fae348005f0
ch

GraphRoot



Instruction Selection

• Pattern matching engine maps subtrees to instructions and
pseudo-ops

• Generates another SSA form: Machine IR (MIR)

• Real machine instructions

• Some (target-specific) pseudo instructions

• Mix of virtual and physical registers

• Low-level optimisations can happen here



Register allocation

• Maps virtual registers to physical registers

• Adds stack spills / reloads as required

• Can reorder instructions, with some constraints



MC Streamer

• Class with assembler-like interface
• Emits one of:

• Textual assembly
• Object code file (ELF, Mach-O, COFF)
• In-memory instruction stream

• All generated from the same instruction definitions



Questions?
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The 1960s - 1970s

• Instructions took multiple cycles

• Only one instruction in flight at once

• Optimisation meant minimising the number of instructions
executed

• Sometimes replacing expensive general-purpose instructions
with specialised sequences of cheaper ones



The 1980s

• CPUs became pipelined

• Optimisation meant minimising pipeline stalls

• Dependency ordering such that results were not needed in the
next instruction

• Computed branches became very expensive when not correctly
predicted



Stall Example

Fetch

Fetch

Decode

Decode

Register Fetch

Register FetchRegister FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add

add add add addjne jne jne jne jne

⌥
(int i=100 ; i!=0 ; i--)

...  ⌃ ⇧⌥
start:

...

add r1 , r1 , -1

jne r1 , 0, start  ⌃ ⇧
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ExecuteExecuteExecute
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WritebackWriteback
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add

add add add

jne

jne jne jne jne

⌥
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Fixing the Stall

⌥
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add r1 , r1 , -1

...

jne r1 , 0, start  ⌃ ⇧

Is this a good solution?
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Note about e�ciency

• In-order pipelines give very good performance per Watt at low
power

• Probably not going away any time soon (see ARM Cortex A7,
A53)

• Compiler optimisations can make a big di↵erence!



The Early 1990s

• CPUs became much faster than memory

• Caches hid some latency

• Optimisation meant maximising locality of reference,
prefetching

• Sometimes, recalculating results is faster than fetching from
memory

• Note: Large caches consume a lot of power, but fetching a
value from memory can cost the same as several hundred ALU
ops



The Mid 1990s

• CPUs became superscalar
• Independent instructions executed in parallel

• CPUs became out-of-order
• Reordered instructions to reduce dependencies

• Optimisation meant structuring code for highest-possible ILP

• Loop unrolling no longer such a big win



Superscalar CPU Pipeline Example: Sandy Bridge

Can dispatch up to six instructions at once, via 6 pipelines:

1. ALU, VecMul, Shu✏e, FpDiv, FpMul, Blend

2. ALU, VecAdd, Shu✏e, FpAdd

3. Load / Store address

4. Load / Store address

5. Load / Store data

6. ALU, Branch, Shu✏e, VecLogic, Blend



Branch Predictors

• Achieve 95+% accuracy on modern CPUs

• No cost when branch is correctly predicted

• Long and wide pipelines mean very expensive for the
remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches
roughly every 7 cycles, what’s the probability of filling the pipeline?

Only 35%!
Only 12% with a 90% hit rate!
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The Late 1990s

• Single Instruction, Multiple Data (SIMD) became mainstream

• e.g. 1,2,3,4 + 2,3,4,5 = 3,5,7,9 as a single instruction

• SIMD units are also superscalar, so potentially multiple SIMD
instructions dispatched per cycle!

• Factor of 2-4⇥ speedup when used correctly

• Optimisation meant ensuring data parallelism

• Loop unrolling starts winning again, as it exposes later
optimisation opportunities

• Modern compilers unroll near the start and then re-roll loops
near the end of the optimisation pipeline!



The Early 2000s

• (Homogeneous) Multicore became mainstream

• Power e�ciency became important

• Parallelism provides both better throughput and lower power

• Optimisation meant exploiting coarse-grained parallelism



False sharing and multicore

• Thread a writes to one variable.

• Thread b reads another.

• Both variables are in the same cache line.

• What happens?



Cache coherency: MESI protocol

Modified cache line contains local changes

Shared cache line contains shared (read-only) copies of data

Exclusive cache line contains the only copy of data

Invalid cache line contains invalid data



Cache ping-pong

• Both cores have the line in shared state

• Core 2 acquires exclusive state (around 200 cycles), Core 1
line moves to invalid state

• Core 2 writes, line enters modified state

• Core 1 reads, fetches data from core 2 (around 200 cycles),
both lines move to shared state



The Late 2000s

• Programmable GPUs became mainstream

• Hardware optimised for stream processing in parallel

• Very fast for massively-parallel floating point operations

• Cost of moving data between CPU and CPU is high

• Optimisation meant o✏oading operations to the GPU



The 2010s

• Modern processors come with multiple CPU and GPU cores

• All cores behind the same memory interface, cost of moving
data between them is low

• Increasingly contain specialised accelerators

• Often contain general-purpose (programmable) cores for
specialised workload types (e.g. DSPs)

• Optimisation is hard.

• Lots of jobs for compiler writers!



Common Programming Models

• Sequential (can we automatically detect parallelism)?

• Explicit message passing (e.g. MPI, Erlang)

• Annotation-driven parallelism (e.g. OpenMP)

• Explicit task-based parallelism (e.g. libdispatch)

• Explicit threading (e.g. pthreads, shared-everything
concurrency)



Parallelising Loop Iterations

• Same problem to targeting SIMD

• Looser constraints: data can be unaligned, flow control can be
independent

• Tighter constraints: loop iterations must be completely
independent

• (Usually) more overhead for creating threads than using SIMD
lanes



Communication and Synchronisation Costs
What’s the best implementation strategy for this?⌥
#pragma omp parallel for

for (int i=0 ; i<100 ; i++)

{

process(a[i]);

}  ⌃ ⇧

• Spawn a new thread for each iteration?

• Spawn one thread per core, split loop iterations between
them?

• Spawn one thread per core, have each one start a loop
iteration and check the current loop induction variable before
doing the next one?

• Spawn one thread per core, pass batches of loop iterations to
each one?

• Something else?
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HELIX: Parallelising Sequential Segments in Loops

• Loop iterations each run a sequence of (potentially expensive)
steps

• Run each step on a separate core

• Each core runs the same number of iterations as the original
loop

• Use explicit synchronisation to detect barriers



Execution Models for GPUs

• GPUs have no standardised public instruction set

• Code shipped as source or some portable IR

• Compiled at install or load time

• Loaded to the device to run



SPIR

• Standard Portable Intermediate Representation

• Khronos Group standard, related to OpenCL

• Subsets of LLVM IR (one for 32-bit, one for 64-bit)

• Backed by ARM, AMD, Intel (everyone except nVidia)

• OpenCL programming model extensions as intrinsics

• Design by committee nightmare, no performance portability



SPIR-V

• Standard Portable Intermediate Representation (for Vulkan)

• Khronos Group standard, related to Vulkan

• Independent encoding, easy to map to/from LLVM IR

• Backed by ARM, AMD, Intel and nVidia

• Intended as a compilation target for GLSL, OpenCL C, others



PTX

• Parallel Thread eXecution

• IR created by nVidia

• Semantics much closer to nVidia GPUs



HSAIL

• Heterogeneous Systems Architecture Intermediate Language

• Cross-vendor e↵ort under the HSA umbrella

• More general than PTX (e.g. allows function pointers)



Single Instruction Multiple Thread (SIMT)

• SIMD with independent register sets, varying-sized vectors

• Program counter (PC) shared across threads

• All threads perform the same operation, but on di↵erent data

• Diverging threads get their own PC

• Only one PC used at a time

• Throughput halves for each divergent branch until only one
thread is running

• Explicit barrier instructions allow diverged threads to
rendezvous.



Thread Groups

• GPU programs run the same code (kernel) on every element
in an input set

• Threads in a group can communicate via barriers and other
synchronisation primitives

• Thread groups are independent



GPU Memory Model

• Per-thread memory (explicitly managed, equivalent to CPU
cache)

• Shared memory between thread groups (equivalent to CPU
shared L3 cache)

• Global memory (read-write, cache coherent)

• Texture memory (read-only or write-only, non-coherent)



Costs for GPU Use

• Setup context (MMU mappings on GPU, command queue).
Typically once per application.

• Copying data across the bus is very expensive, may involve
bounce bu↵ers

• Newer GPUs share a memory controller with the CPU (might
not share an address space, setting IOMMU mappings can be
expensive)

• Calling into the OS kernel to send messages (userspace
command submission helps here)

• Synchronisation (cache coherency) between CPU and GPU



Thought Experiment: memcpy(), memset()

• GPUs and DSPs are fast stream processors

• Ideal for things like memcpy(), memset()

• What bottlenecks prevent o✏oading all memset() / memcpy()
calls to a coprocessor?

• How could they be fixed?



Autoparallelisation vs Autovectorisation

• Autovectorisation is a special case of autoparallelisation

• Requires dependency, alias analysis between sections

• GPU SIMT processors are suited to the same sorts of
workloads as SIMD coprocessors

• (Currently) only sensible when working on large data or very
expensive calculations



Loop o✏oading

• Identify all inputs and outputs

• Copy all inputs to the GPU

• Run the loop as a GPU kernel

• Copy all outputs back to main memory

• Why can this go wrong?

• What happens if you have other threads accessing memory?

• Shared everything is hard to reason about
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Avoiding Divergent Flow Control: If Conversion

• Two threads taking di↵erent paths must be executed
sequentially

• Execute both branches

• Conditionally select the result

• Also useful on superscalar architectures - reduces branch
predictor pressure

• Early GPUs did this in hardware



OpenCL on the CPU

• Can SIMD emulate SIMT?

• Hardware is similar, SIMT is slightly more flexible

• Sometimes, OpenCL code runs faster on the CPU if data is
small

• Non-diverging flow is trivial

• Diverging flow requires special handling



Diverging Flow

• Explicit masking for if conversion

• Each possible path is executed

• Results are conditionally selected

• Significant slowdown for widely diverging code

• Stores, loads-after-stores require special handling



OpenCL Synchronisation Model

• Explicit barriers block until all threads in a thread group have
arrived.

• Atomic operations (can implement spinlocks)
• Why would spinlocks on a GPU be slow?

• Branches are slow, non-streaming memory-access is
expensive...

• Random access to workgroup-shared memory is cheaper than
texture memory



OpenCL Synchronisation Model

• Explicit barriers block until all threads in a thread group have
arrived.

• Atomic operations (can implement spinlocks)
• Why would spinlocks on a GPU be slow?
• Branches are slow, non-streaming memory-access is

expensive...
• Random access to workgroup-shared memory is cheaper than
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Barriers and SIMD

• Non-diverging flow, barrier is a no-op

• Diverging flow requires rendezvous

• Pure SIMD implementation (single core), barrier is where start
of a basic block after taking both sides of a branch

• No real synchronisation required



OpenCL with SIMD on multicore CPUs

• Barriers require real synchronisation

• Can be a simple pthread barrier

• Alternatively, di↵erent cores can run independent thread
groups



Questions?



JIT Compilation

David Chisnall
University of Cambridge

LLVM Summer School, Paris, June 13, 2017



Late Binding

• Static dispatch (e.g. C function calls) are jumps to specific
addresses

• Object-oriented languages decouple method name from
method address

• One name can map to multiple implementations (e.g.
di↵erent methods for subclasses)

• Destination must be computed somehow



Example: C++

• Mostly static language

• Methods tied to class hierarchy

• Multiple inheritance can combine class hierarchies⌥
class Cls {

virtual void method ();

};

// object is an instance of Cls or a subclass of

Cls

void function(Cls *object) {

// Will call Cls:: method or a subclass

override

object ->method ();

}  ⌃ ⇧



Example: JavaScript

• Prototype-based dynamic object-oriented language

• Objects inherit from other objects (no classes)

• Duck typing⌥
a.method = function () { ... };

...

// Will call method if b or an object on

// b’s prototype chain provides it. No

// difference between methods and

// instance/ variables: methods are just

// instance variables containing

// closures.

b.method ();  ⌃ ⇧



VTable-based Dispatch

• Tied to class (or interface) hierarchy

• Array of pointers (virtual function table) for method dispatch

• Method name mapped to vtable o↵set⌥
struct Foo {

int x;

virtual void foo();

};

void Foo::foo() {}

void callVirtual(Foo &f) {

f.foo();

}

void create () {

Foo f;

callVirtual(f);

}  ⌃ ⇧



Calling the method via the vtable

⌥
define void @_Z11callVirtualR3Foo (% struct.Foo* %

f) uwtable ssp {

%1 = bitcast %struct.Foo* %f to void (% struct.

Foo*)***

%2 = load void (% struct.Foo*)*** %1, align 8,

!tbaa !0

%3 = load void (% struct.Foo*)** %2, align 8

tail call void %3(% struct.Foo* %f)

ret void

}  ⌃ ⇧
Call method at index 0 in vtable.



Creating the object

⌥
@_ZTV3Foo = unnamed_addr constant [3 x i8*] [

i8* null ,

i8* bitcast ({ i8*, i8* }* @_ZTI3Foo to i8*),

i8* bitcast (void (% struct.Foo*)*

@_ZN3Foo3fooEv to i8*)]

define linkonce_odr void @_ZN3FooC2Ev (% struct.

Foo* nocapture %this) {

%1 = getelementptr inbounds %struct.Foo* %this

, i64 0, i32 0

store i32 (...) ** bitcast

(i8** getelementptr inbounds ([3 x i8*]*

@_ZTV3Foo , i64 0, i64 2) to i32 (...) **),

i32 (...) *** %1

}  ⌃ ⇧



Devirtualisation

• Any indirect call prevents inlining

• Inlining exposes a lot of later optimisations

• If we can prove that there is only one possible callee, we can
inline.

• Easy to do in JIT environments where you can deoptimise if
you got it wrong.

• Hard to do in static compilation



Problems with VTable-based Dispatch

• VTable layout is per-class

• Languages with duck typing (e.g. JavaScript, Python,
Objective-C) do not tie dispatch to the class hierarchy

• Dynamic languages allow methods to be added / removed
dynamically

• Selectors must be more abstract than vtable o↵sets (e.g.
globally unique integers for method names)



Lookup Caching

• Method lookup can be slow or use a lot of memory (data
cache)

• Caching lookups can give a performance boost

• Most object-oriented languages have a small number of
classes used per callsite

• Have a per-callsite cache



Callsite Categorisation

• Monomorphic: Only one method ever called
• Huge benefit from inline caching

• Polymorphic: A small number of methods called
• Can benefit from simple inline caching, depending on pattern
• Polymorphic inline caching (if su�ciently cheap) helps

• Megamorphic: Lots of di↵erent methods called
• Cache usually slows things down



Inline caching in JITs

• Cache target can be inserted into the instruction stream

• JIT is responsible for invalidation

• Can require deoptimisation if a function containing the cache
is on the stack



Speculative inlining

• Lookup caching requires a mechanism to check that the
lookup is still valid.

• Why not inline the expected implementation, protected by the
same check?

• Essential for languages like JavaScript (lots of small methods,
expensive lookups)



Inline caching

⌥
kup_fn  ⌃ ⇧

⌥
, $last , fail

hod

:  ⌃ ⇧
• First call to the lookup rewrites the instruction stream

• Check jumps to code that rewrites it back



Polymorphic inline caching

⌥
, $expected , cls

hod

, $expected2 , cls

hod  ⌃ ⇧
• Branch to a jump table

• Jump table has a sequence of tests and calls

• Jump table must grow

• Too many cases can o↵set the speedup



Trace-based optimisation

• Branching is expensive

• Dynamic programming languages have lots of method calls

• Common hot code paths follow a single path

• Chain together basic blocks from di↵erent methods into a
trace

• Compile with only branches leaving

• Contrast: trace vs basic block (single entry point in both,
multiple exit points in a trace)



Type specialisation

• Code paths can be optimised for specific types

• For example, elide dynamic lookup

• Common case: a+b is much faster if you know a and b are
integers!

• Can use static hints, works best with dynamic profiling

• Must have fallback for when wrong



Deoptimisation

• Disassemble existing stack frame and continue in interpreter /
new JIT’d code

• Stack maps allow mapping from register / stack values to IR
values

• Fall back to interpreter for new control flow

• NOPs provide places to insert new instructions

• New code paths can be created on demand

• Can be used when caches are invalidated or the first time that
a cold code path is used



LLVM: Anycall calling convention

• Used for deoptimisation

• All arguments go somewhere

• Metadata emitted to find where

• Very slow when the call is made, but no impact on register
allocation

• Call is a single jump instruction, small instruction cache
footprint

• Designed for slow paths, attempts not to impact fast path



Deoptimisation example

JavaScript:⌥
c;  ⌃ ⇧
Deoptimisable pseudocode:⌥
if (!( is_integer(b) && is_integer(c)))

anycall_interpreter (&a, b, c); // Function

does not return

a = b+c;  ⌃ ⇧



Case Study: JavaScriptCore (WebKit)

• Production JavaScript environment

• Multiple compilers!



JavaScript is odd

• Only one numeric type (double-precision floating point)

• Purely imperative - no declarative class structures

• No fixed object layouts

• Code executes as loaded, must start running before download
finishes

• Little scoping



Web browsers are di�cult environments

• Most JavaScript code is very simple

• Fast loading is very important

• Some JavaScript is very CPU-intensive

• Fast execution is important

• Users care a lot about memory usage!



Before execution

• JSC reads code, produces AST, generates bytecode

• Bytecode is dense and the stable interface between all tiers in
the pipeline



Contrast: V8

• Initial parse skips text between braces

• No stored IR, AST (just pointers into the code)

• Recompilation includes reparse of relevant parts



Overall design: multiple tiers

• First tiers must start executing quickly

• Hot code paths sent to next tiers

• Last tier must generate fast code

Compare with simplified MysoreScript: Two tiers (AST interpreter
/ JIT), functions promoted to JIT after 10 executions.



First tier: LLInt, a bytecode interpreter

• Very fast to load

• Written in custom low-level portable assembly

• Simple mapping from each asm statement to host instruction

• Precise control of stack layout, no C++ code

• 14KB binary size: fits in L1 cache!



Second tier: Baseline JIT

• LLInt reads each bytecode, dispatches on demand

• After 6 function entries or 100 statement invocations, JIT is
triggered

• Simple bytecode JIT, pastes asm similar to LLInt into
sequences.

• Exactly the same stack layout as LLInt.

• Introduces polymorphic inline caching for heap accesses

• Works at method granularity



Why is stack layout important?

• Partial traces may be JIT’d

• Must be able to jump back to LLInt for cold paths

• Remember: Deoptimization



Type feedback

• Pioneered by Self

• Both LLInt and the baseline JIT collect type information

• Later tiers can optimise based on this

• More useful than type inference for optimisation (this is
usually type X, vs this type must always be type X, Y, or Z)

General note: for optimisation, X is usually true is often more
helpful than Y is always true if X is a much stronger constraint

than Y (and X is cheap to check).



Other profiling

• Function entry

• Branch targets

• Build common control flow graphs



Tiers 3/4: the high-performance JITs

LLVM usage now replaced by B3 (Bare Bones Backend). LLV8 still
uses LLVM for a last-tier JIT in V8.



CPS Optimisers

• Continuation-passing style IR

• Every call is a tail call, all data flow is explicit

• Lots of JavaScript-specific optimisations

• Many related to applying type information

• CPS not covered much in this course, but lots of recent
research on combining the best aspects of SSA and CPS!



Type inference

• Static type inference is really hard for dynamic languages

• Must be conservative: bad for optimisation

• Type feedback provided by earlier tiers

• Propagate forwards (e.g. int32 + int32 is probably int32:
overflow unlikely)

• Fed back into later compiler stages

• LLInt and baseline JIT collect profiling information



Aside: Samsung’s AoT JavaScript compiler

• Discontinued research project

• Used techniques from symbolic execution to statically find
likely types for all code paths

• Generated optimised code

• Performance close to state-of-the-art JITs



Tier 3: Data flow graph JIT

• Speculatively inlines method calls

• Performs dataflow-based analyses and optimizations

• Costly to invoke, only done for hot paths

• Performs on-stack replacement to fall back to baseline JIT /
LLInt

(higher is better)



Tier 4: LLVM / B3

• Input SSA is the output from the CPS optimisations

• Very high costs for optimisation

• Latency penalty avoided by doing LLVM compilation in a
separate thread

• More advanced register allocator, low-level optimisations

• B3 does fewer optimisations, for lower latency (and power
consumption), but still has much better register allocation
than DFG JIT.



Patchpoints for deopimisation

• LLVM patchpoint provides jump to the runtime

• Stack map allows all live values to be identified

• Any that are needed for the interpreter are turned back into
an interpreter stack frame

• Interpreter continues

• Deoptimisation means incorrect guesses in optimisation: fed
back as profiling information



Patchpoints for object layout

• Speculatively compiled assuming fixed field o↵sets

• Can become incorrect as more code is executed

• Dynamically patched with correct o↵sets when hit



FTL Performance (asm.js benchmarks)

(Lower is better)



FTL vs Clang

(Lower is better)



Lessons

• Modern compilers need a variety of di↵erent techniques

• There’s no one-size-fits-all approach

• High-level transforms and microoptimisations are both needed

• JavaScript is designed to provide full employment for compiler
writers

• JSC with FTL performance on asm.js code is similar to GCC
from 10 years ago: there’s no such thing as a slow language,
only a slow compiler!

The End
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